Quantile Regression for Right-Censored and Length-Biased Data

Xue-rong CHEN, Yong ZHOU

Acta Mathematicae Applicatae Sinica(English Series) ›› 2012, Vol. 28 ›› Issue (3) : 443-462.

PDF(318 KB)
PDF(318 KB)
Acta Mathematicae Applicatae Sinica(English Series) ›› 2012, Vol. 28 ›› Issue (3) : 443-462. DOI: 10.1007/s10255-012-0157-3
ARTICLES

Quantile Regression for Right-Censored and Length-Biased Data

  • Xue-rong CHEN, Yong ZHOU
Author information +
History +

Abstract

Length-biased data arise in many important fields, including epidemiological cohort studies, cancer screening trials and labor economics. Analysis of such data has attracted much attention in the literature. In this paper we propose a quantile regression approach for analyzing right-censored and length-biased data. We derive an inverse probability weighted estimating equation corresponding to the quantile regression to correct the bias due to length-bias sampling and informative censoring. This method can easily handle informative censoring induced by length-biased sampling. This is an appealing feature of our proposed method since it is generally difficult to obtain unbiased estimates of risk factors in the presence of length-bias and informative censoring. We establish the consistency and asymptotic distribution of the proposed estimator using empirical process techniques. A resampling method is adopted to estimate the variance of the estimator. We conduct simulation studies to evaluate its finite sample performance and use a real data set to illustrate the application of the proposed method.

Key words

length-biased sampling / right-censored / information censoring / quantile regression / estimating equations / resampling method

Cite this article

Download Citations
Xue-rong CHEN, Yong ZHOU. Quantile Regression for Right-Censored and Length-Biased Data. Acta Mathematicae Applicatae Sinica(English Series), 2012, 28(3): 443-462 https://doi.org/10.1007/s10255-012-0157-3

References

[1] Addona, V., Wolfson, D.B. A Formal Test for the Stationarity of the Incidence Rate Using Data from a Prevalent Cohort Study with Follow-up. Lifetime Data Anal, 12: 267-284 (2006)
[2] Andersen, P.K., Gill, R.D. Cox’s Regression Model for Counting Processes: A Large Sample Study. The Annals of Statistics, 10: 1100-1120 (1982)
[3] Asgharian, M., M’Lan, C.M., Wolfson, D.B. Length-Biased Sampling with Right Censoring: An Unconditional Approach. Journal of the American Statistical Association, 97: 201-209 (2002)
[4] Asgharian, M., Wolfson, D.B. Asymptotic Behavior of the Unconditional NPMLE of the Length-Biased Survivor Function From Right Censored Prevalent Cohort Data. The Annals of Statistics, 33: 2109-2131 (2005)
[5] Asgharian, M., Wolfson, D.B., Zhang, X. Checking stationarity of the incidence rate using prevalent cohort survial data. Statistics in Medicine, 25: 1751-1767 (2006)
[6] Bang, H., Tsiatis, A.A. Median Regression with Censored Cost Data. Biometrics, 58: 643-649 (2002)
[7] Buckley, J., James, I. Linear Regression with Censored Data. Biometrika, 66: 429-436 (1979)
[8] Cai, Z., Xu, X. Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models. Journal of the American Statistical Association, 103: 1595-1608 (2009)
[9] Chen, S.X., Hall, P. Smoothed Empirical Likelihood Confidence Intervals for Quantiles. The Annals of Statistics, 21: 1166-1181 (1993)
[10] Chen, X., Linton, H.O., Keilegom, I.V. Estimation of Semiparametric Models when Criterion Function is Not Smooth. Econometrica, 71: 1591-1608 (2003)
[11] Cox, D.R. Regression Models and Life-Tables. Journal of the Royal Statistical Society (Series B), 34: 187-220 (1972)
[12] Dabrowska, D.M. Quantile Regression in Tranformation Models. Indian Statistical Institute, 67: 153-186 (2005)
[13] Fleming, T.R., Harrington, D.P. Counting Processes and Survival Analysis. Wiley, New York, 1991
[14] Foldes, A., Rejto, L. Strong Uniform Consistency for Nonparametric Survival Curve Estimators from Randomly Censored Data. The Annals of Statistics, 9: 122-129 (1981)
[15] Gill, R.D., Vardi, Y., Wellner, J.A. Large Sample Theory of Empirical Distribution in Biased Sampling Models. The Annals of Statistics, 12: 1069-1112 (1988)
[16] He, X., Liang, H. Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-In- Variables Models. Statistica Sinica, 10: 129-140 (2000)
[17] He, X., Ng, P., Portnoy, S. Bivariate Quantile Smoothing Splines. Journal of the Royal Statistical Society (Series B), 60: 537-550 (1998)
[18] He, X., Shi, P. Convergence Rate of B-Spline Estimator of Nonparametric Conditional Quantile Functions. Nonparametric Statistics, 3: 299-308 (1994)
[19] Honoré, B., Khan, S., Powell, J.L. Quantile Regression under Random Censoring. Journal of Econometrics, 109: 67-105 (2002)
[20] Hunter, D.R., Lange, K. Quantile Regression via an MM Algorithm. Journal of Computational and Graphical Statistics, 9: 60-77 (2000)
[21] Kai, B., Li, R., Zou, H. Local CQR smoothing: an efficient and safe alternative to local polynomial regression. Journal of Royal Statistical Society(Series B), 72: 49-69 (2010)
[22] Kai, B., Li, R., Zou, H. New efficient estimation and variable selection methods for semiparametric varyingcoefficient partially linear models. Annals of Statistics, 39: 305-332 (2011)
[23] Koenker, R. Quantile Regression for Longitudinal Data. Journal of Multivariate Analysis, 91: 74-89 (2004)
[24] Koenker, R. Quantile Regression. Cambbridge University Press, New York, 2005
[25] Koenker, R., Bassett, G.S. Regression Quantiles. Econometrica, 46: 33-50 (1978)
[26] Kosorok, M.R. Introduction to Empirical Processes and Semiparametric Inference. Springer Press, New York, 2006
[27] Lagakos, S.W., Barraj, L.M., De Gruttola, V. Nonparametric Analysis of Truncated Survival Data, with Application to AIDS. Biometrika, 75: 515-523 (1988)
[28] Liang, H., Li, R. Variable selection for partially linear models with measurement Errors. Journal of American Statistical Association, 104: 234-248 (2009)
[29] Liang, H., Zhou, Y. Semiparametric Inference for ROC Curves with Censoring. Scandinavian journal of statistics, 35: 212-227 (2008)
[30] Lin, D.Y., Wei, L.J., Ying, Z.L. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika, 80: 557-572 (1993)
[31] Mu, Y.M., He, X. Power Transformation Toward a Linear Regression Quantile. Journal of the American Statistical Association, 102: 269-279 (2007)
[32] Nan, B., Kalbfleisch, J.D., Yu, M.G. Asymptotic Theory for the Semiparametric Accelerated Failure Time Model with Missing Data. The Annals of Statistics, 37: 2351-2376 (2009)
[33] Newey, W.K., Mcfadden, D. Large Sample Estimation and Hypothesis Testing. Handbook of Econometrics, Volume IV, Elsevier Science B.V, 1994
[34] Ning, J., Qin, J., Shen, Y. Buckley-James-type Estimator with Right-censored and Length-biased Data. Biometrics, 67:1369-1378 (2011)
[35] Ning, J., Qin, J., Shen, Y. Nonparametric Tests for Right-Censored Data with Biased Sampling. Journal of the Royal Statistical Society (Series B), 72: 609-630 (2010)
[36] Nolan, D., Pollard, D. U-Processes: rates of convergence. Annals of Statistics, 15: 780-799 (1987)
[37] Pakes, A., Pollard, D. Simulation and the Asymptotics of Optimization Estimators. Econometrica, 57: 1027-1057 (1989)
[38] Parzen, M.I., Wei, L.J., Ying, Z. A resampling method based on pivotal estimating functions. Biometrika, 81: 341-350 (1994)
[39] Peng, L., Huang, Y. Survival Analysis with Quantile Regression Models. Journal of the American Statistical Association, 103: 637-649 (2008)
[40] Pollard, D. New Ways to Prove Central Limit Theorems. Econometric Theory, 1: 295-314 (1985)
[41] Portnoy, S. Censored Regression Quantiles. Journal of the American Statistical Association, 98: 1001-1012 (2003)
[42] Powell, J.L. Least Absolute Deviaions Estimation for the Censored Regression Model. Journal of Econometrics, 25: 303-325 (1984)
[43] Powell, J.L. Censored Regression Quantiles. Journal of Econometrics, 32: 143-155 (1986)
[44] Qin, J., Shen, Y. Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model. Biometrics, 66: 382-392 (2010)
[45] Ritov, Y. Estimation in a Linear Regression Model with Censored Data. The Annals of Statistics, 18: 303-328 (1990)
[46] Robins, J.M., Rotnitzky, A. Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers. AIDS Epidemiology: Methodologic Issues, Eds. N. Jewell, K. Dietz and V. Farewell, Boston: Birkhauser, 1992, 24-33
[47] Shen, Y., Ning, J., Qin, J. Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models. Journal of the American Statistical Association, 104: 1192-1202 (2009)
[48] Tsai,W.Y. Pseudo-Partial Likelihood for Proportional Hazards Models with Biased-Sampling Data. Biometrika, 96: 601-615 (2009)
[49] Tsiatis, A.A. Estimating Regression Parameters Using Linear Rank Tests for Censored Data. Annals of Statistics, 18: 354-372 (1990)
[50] Turnbull, B.W. The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data. Journal of the Royal Statistical Society (Series B), 38: 290-295 (1976)
[51] Una-Alvarez, J.D. Nonparametric Estimation Under Length-Biased Sampling and Type I Censoring: A Moment Based Approach. Annals of the Institute of Statistical Mathematics, 56: 667-681 (2004)
[52] Van der Vaart, A.W. Asymptotic statistics. Cambridge University Press, Cambridge, 1998
[53] Van der Vaart, A.W., Wellner, J.A. Weak Convergence and Empirical Processes. Springer-Verlag, New York, 1996
[54] Vardi, Y. Nonparametric Estimation in the Presence of Length Bias. The Annals of Statistics, 10: 616-620 (1982)
[55] Vardi, Y. Empirical distribution in Selection Bias Models. The Annals of Statistics, 13: 178-203 (1985)
[56] Vardi, Y. Multiplicatice Censoring, Renewal Processes, Deconvolution and Decreasing Density: Nonparametric Estimation. Biometrika, 76: 751-761 (1989)
[57] Wang, H.X., Fygenson, M. Inference for Censored Quantile Regrssion Models in Longitudinal Studies. The Annals of Statistics, 37: 756-781 (2009)
[58] Wang, H.X.,Wang, L. LocallyWeighted Censored Quantile Regression. Journal of the American Statistical Association, 104: 1117-1128 (2009)
[59] Wang, M.C. Nonparametric Estimation From Cross-Sectional Survival Data. Journal of the American Statistical Association, 86: 130-143 (1991)
[60] Wang, M.C. Hazard Regression Analysis for Length-Biased Data. Biometrika, 83: 343-354 (1996)
[61] Wei, Y., He, X. Disscussion Paper Conditional Growth Charts. The Annals of Statistics, 34: 2069-2097 (2006)
[62] Ying, Z., Jung, S.H., Wei, L.J. Survival Analysis with Median Regression Models. Journal of the American Statistical Association, 90: 174-184 (1995)
[63] Zelen, M. Forward and Backword Recurrence Times and Length Biased Sampling: Age Specific Models. Lifetime Data Analysis, 10: 325-334 (2005)
[64] Zelen, M., Feinleib, M. On the Theory of Screening for Chronic Diseases. Biometrika, 56: 601-614 (1969)
[65] Zhou, W., Jing, B.Y. Smoothed Empirical Likelihood Confidence Intervals for the Difference of Quantiles. Statist. Sinica, 13: 83-95 (2003)

Funding

Zhou’s work was supported by the following funding bodies: National Natural Science Funds for Distinguished Young Scholar (No. 70825004), Creative Research Groups of China (No. 10721101), Shanghai University of Finance and Economics Project 211 Phase III and Shanghai Leading Academic Discipline Project (No. B803).
PDF(318 KB)

160

Accesses

0

Citation

Detail

Sections
Recommended

/